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Comparison of Finite Volume Canonical and Grand
Canonical Gibbs Measures: The Continuous Case
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We consider a continuous gas with finite range positive pair potential and we
assume that the cluster expansion convergence condition holds. We prove a
sharp bound on the difference between the finite volume grand canonical and
canonical expectation of local observable. The bound is given in terms of the
support of the observable, of its grand canonical variance and of the volume
on which the system is confined.
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1. INTRODUCTION

The equivalence of ensembles is one of the central problems of statistical
mechanics and traces back to Gibbs (1902). As far as the thermodynamic
functions is concerned under suitable conditions on the interaction, this
question is already well understood.(l:?) The equivalence of ensembles as
been studied also at the level of measures and important results have been
obtained. Classical results state that the difference between the canonical
and grand canonical expectation of a local observable vanishes when the
volume goes to infinity and the support of the observable is kept fixed (see
e.g., refs. 3-5 and references therein). Recently the possibility to obtain
sharper estimates has been widely investigated and the main motivations
come from:
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(1) the theory of stochastic spin exchange dynamics reversible w.r.t.
the canonical Gibbs measure of finite volume,®7)

(ii) the theory of Renormalization group pathologies®

(iii) the theory of random matrices.*)

In order to improve over classical results different methods have been
envisaged, mostly for lattice compact spins models (see e.g., refs. 7, 8 and
10). In particular, in ref. 10 the case of a general lattice discrete spin model
satisfying a suitable mixing property has been analyzed and optimal esti-
mates has been established. Contrary to the methods developed in ref. 7
or 8, the techniques of ref. 10 completely avoid proving a local central
limit theorem and pose negligible restrictions on the size of the support
of the observable. In the present paper, motivated by a rigorous analysis of
the so-called Boltzmann—Gibbs principle for the equilibrium fluctuations of
interacting Brownian and Ornstein-Uhlenbeck particles processes, 112 we
extend the approach of ref. 10 to a continuous system of particles inter-
acting through a finite range positive pair potential. In particular we prove
that, under a suitable smallness condition on the activity z (see condition
(CE) before Theorem 2.1),

1> max{z] Al, VZTAT)

() = w(H|<Culf, N

: (L.1)

where v and u are, respectively, the canonical and grand canonical Gibbs
measure in the region A, z is the activity and it is such that the mean
grand canonical number of particles coincides with the (fixed) canonical
value, |A| is the support of the observable f and C is a positive constant
independent of f.

In the case of the continuous gas, the main difficulty comes from the
fact that the number of particles that can be contained in any fixed and
finite volume is not bounded. This problem is essentially bypassed assum-
ing the (CE) condition. This condition plays an important role not only
because it assures a strong mixing property (decay of correlations) of the
grand canonical measure, crucial in the proof of (1.1), but also because
it gives a tight control on the large deviations of the local number of
particles.

Our result improves over the one obtained by Spohn in 1986. Indeed,
in Lemma 13 in ref. 13, it is proven that, if z satisfies (CE) and if &
denotes the unique infinite volume Gibbs measure, then

lim |A] @[ 0() = n(/)?] =0, (1.2)
A /R
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where f is a C*°-function with compact support, which depends on the
number of particles on finite regions and such that g@(f)=0.

The paper is organized as follows. In Section 2, we introduce the
notations and give the main theorem. In Section 3, we prove the theorem
using the technical results contained in Section 4.

2. NOTATIONS AND RESULTS

Let B(R?) the collection of finite (measurable) subsets of R?. For A e
B(RY), we denote by |A| the Lebesgue measure of A. The configuration
space is the set Q of all locally finite subsets of RY:

Q={ wcR%:card(wNA) <oco VA e B[RY) },

where card(A) stands for the cardinality of A. We define the counting vari-
ables N4 :w— card(wN A), where A € B(RY). Given 1, w € Q, we let nAw
be the symmetric difference of n and w, i.c., nAw=nUw)\ (n Nw). For
A € B(RY), we consider the finite volume configuration space

Qpr={wCA:w is finite}

A function f is called a local function if there exists a set A € B(R?) such
that f depends only on the configuration inside A, i.e., on wNA, and A
will be its support.

For x,yeR?, the Euclid distance is denoted by d(x, y) and we write
|x| for d(x,0). Finally, by Q; we denote the cube of all x =(xq,...,x4) €
R? such that x; €[0,/]. If x eR¢, Q;(x) stands for Q;+x.

*Regular sets: a finite subset A of R? is said to be a [-regular, | R,
if there exists x € R? such that A is the union of a finite number of cubes
0;(x' +x) where x' €/Z?. This means that there exists a set of indexes I
such that A =Uj¢j, Q;(x" +x). We denote the class of all such sets by F;.
The I-support of a function f of support A is the smallest /-regular set A
such that ACA. Given a set A €, we define 97 A={xeA | d(x, A°)<r}
for some positive real r.

*The Hamiltonian: Let ¢ : RY —> R be a measurable function. We
assume the following on the pair potential ¢:

(1) ¢ is an even function on R? and it has a finite range: take R >0
such that ¢(x)=0 if |x| > R.

(2) ¢ is positive.
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For A a finite measurable subset of R?, the Hamiltonian Hp :Q — R
is given by

Hy@)= Y  ¢kx—y).
{x,y}Cw
{x.y}NA#£D

For  and 7 in Q, we define H} (0) = Hp(wanac), where
oanpc =(@NA)U (MmN AS). A€ is the complement of A and 75 is called the
boundary condition.

*The Gibbs measures: We denote by MZ A(f) the expectation of f
w.r.t. the grand canonical Gibbs measure MZ A With activity z, boundary
condition 7, volume A, while p; A (f) denotes the function w — ,ugf AU).
Explicitly, for all measurable functions f on Q,, we have

n 1 fzk /31‘1”( )
WA= [ PR p) ax,
< ZQ,A k=0 k' Ak

where we have identified the functions on Q4 with the symmetric func-
tions on Up? A", ZZ A 1s the appropriate normalization factor. Moreover,
we write ,ug_ A(f, g) to denote the covariance of f and g w.r.t. the mea-
sure (1) (when it exists). We denote by Vi n(F)i=pl A f | NA=N) the
expectation of f w.r.t. the canonical Gibbs measure with N particles, on
the volume A, and with » as boundary condition. Explicitly

van(f)= fA e PHAW) f(x) dx,

n
ZA,N

where Z;’\, y 1s the appropriate normalization factor.
We omit for simplicity here and in almost all the paper the dependence on
B.

For a subset X €2, we set u; A (X)=pu; a(1x), where 1y is the indica-
tor function on X. The grand canonical Gibbs measure satisfies the DLR
compatibility conditions

u (v (X)) =pl \(X) VXeF ¥V, AeBRY), VCA. (2]
*Cluster Expansion and Strong Mixing Condition: In order to prove

our main result, we need some kind of mixing property of the grand
canonical Gibbs measure, which can be proved under the hypothesis of a
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convergent cluster expansion. An explicit condition which guarantees this
convergence is the following: let Zo(B, ¢) = (e [pa (1 — e P9 dq)_l. Then
assume that

0<z<z0< %io(ﬁ,d)) (CE)

Under hypothesis of positive interaction and (CE), there exists a unique
grand canonical Gibbs measure (see Ref. 1).
Here is our main theorem.

Theorem 2.1. Assume (CE). Let § >0 and N be a possible value of
the number of particles. For a fixed A € Fog4s, we assume that, given a
boundary condition n € @2, the grand canonical Gibbs measure is such that
,uZA(NA)zN and set UX’N(-) =) (- Ny =N). Then, for any function
fe Lz(ugA) whose 2R + §—support A satisfies |A|<|A|'™%, ¢ € (0, 1),
there exist C =C(z0, R,&,8) >0 and v=v(z0, R, &,8) > 0 such that for all
A such that [A|>v

1,2 max{z|A[, vz|Al}
Z|A| ’

WX N ) =1l A (D|SC il o (f2 1)

If the function f has bounded uniform norm || f||o the result is the
same as the discrete case: HZ,A(f’ < 4||f||§Q min{z|Al[, 1} (see ref. 10).
The estimates we use to prove the above result are quite similar to those
of the discrete case in ref. 10. We give here all the details for complete-
ness and because to obtain the LZ-norm we had to refine some of them.
The L%-norm is more suitable in the continuous case because many ob-
servables, as for example the number of particles in a finite volume, have
unbounded uniform norm.

Remark 2.2. As stated above we assume that HZ,A(NA) = N, this
means that the activity is conveniently chosen from the beginning as func-
tion of N, A and 5. This has no consequences on the DLR property of the
Gibbs measure since A and n are kept fixed once and for all.

Remark 2.3. It will be clear from the proof that, if z>z; >0 uni-
formly in |A|, the condition |A|<|A['™* can be relaxed to |A|=o(|Al)
(see definition (3.3) of A).

Remark 2.4. To prove the result (1.2), Spohn needed more than the
condition (CE). Indeed, he took 0 <z <0.282¢(8, ¢) (see ref. 13).
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In order to prove the theorem we need, as we stressed above, a mi-
xing condition for the grand canonical Gibbs measure. One can show that
the following strong mixing condition holds (see Corollary 2.4 in ref. 14
or Lemma 4 in ref. 13 for a proof):

Proposition 2.5. (Property (SMC)). Let z and 8 such that (CE)
holds. There exist two constants a« =a(R,z, 8) and m =m(R, z, ) such
that V A, Ay, A, e BR?) such that Ay CA, AyCA, d(Ay, Ag)>2R and
min(|A§|, |A§|)< exp(md(Ay, Ag)), we have for feFa, and geFa,

1 A< i A (F DIy (gl e ™ Ar20),

where Ay and Ay are respectively the supports of f and g and AR=Z(x e
R? d(x, A)<R)} for ACR?.

Remark 2.6. The constants « and m are respectively increasing and
decreasing as functions of the activity z, 0 <z < %20, and for small z the
constant m is proportional to —logz (see Lemma 4 in ref. 13).

This result has an immediate consequence, which will be useful for
our purpose, see ref. 14 for the proof.

Corollary 2.7. If (CE) holds, there exist two constants @ =a(R, z, 8)
and m=n(R,z, B) such that for all A, A;eBR?), AfCA,

W] A ) =& A(OIST l \ (1 f]) e A e

for all w, ne, for all fEeFa, such that d(Ay, nAw)>3R, and
|ARI< expl i (d(A g, 1bw) = R)].

3. PROOF OF THEOREM 2.1

Through all the section c, ¢’ will denote positive constants which do
not depend on f, A, N and can change from line to line.
Fix A €Fyp4s for some 8 >0. To simplify the notations, we use

ll/ i I’LZ,A ’

v = vZ,yA,

0 = u(Na, Np),

h=h—u(h) Yh p-integrable.
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Let xn be the indicator function of the event {Na (w)=N}. Then we write
that

v(f) = p(f)= LI G1)
m(xN)

Using the Fourier transform, we can express xy as

To

1
xN(@)=—— dt é'v
2no

—To

LN, (@)

Therefore (3.1) becomes

di (e eVs | f)
o) — iy = e BT ) (3.2)
ST di (e )

The proof consists on a separated study of the numerator (Step 1) and the
denominator of (3.2) (Step 2). We conclude the Proof of Theorem 2.1 in
Step 3.

Step I: Study of (77 dt (e s f).
We start by proving an upper bound for a rather special class of functions:
the ones which have, roughly speaking, almost zero covariance with Nj.
In Step 3, using the conservation law Ny = N, we shall extend the result
to more general functions.
Let lp=2R+$4, and {Q,}ic1, the partition of A €Fy,. Given €€ (0,1) and
VelFy,, VCA, we define, for any positive large number M, the set

{ Qi, ielp | d(Q;,V)<Mlogl|Al| } if z2|A|78,

V= .
{ Qi, ielp | d(Q;i, V)M } if z<|A|75.

(3.3)

Let g be a local function of ly-support A and define f=g—agNa,. The
set A1 CA, Ay ey, has the following properties: (i) it can be written as
A1 =U I, V; where for all i € I/A , there exist positive numerical constants

ci, ki such that |Vi|=c; I§, 10, Vil =ki[§ and cik; P22z e 32000 : and (ii)
there exists a positive numerlcal constant « such that « 1|A| |A1| K |A|.
The lp-support of f is Ay=AUA;. To simplify the notation, we use A =
A. Let us define

. (g N3R)

= . 34
% U(Na,. N3) 34
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By Proposition 4.4, the above properties of A and Remark 4.8, «, is well
defined and satisfies

n(g, g
< . 3.5
|O‘g| c A ( )

Then, the following lemma holds.

Lemma 3.1. There exists a positive constant C; = Ci(z9, R, ¢, §)
such that, if f=g—agNa,,

o o 1 max{z|Al, v/z|Al}
/ dt |,u(e'ffNA,f)|<C1M(8,g)2 :
o Z|A|

Step 2: Study of the denominator (™7 1(eisNay dr. We have the fol-
lowing Lemma:

Lemma 3.2. There exists a constant Co =C»(zg, R, 8) such that

To -
f pe'way dr=Cs.

—TTo

Step 3: We conclude the Proof of Theorem 2.1.
By Lemmas 3.1 and 3.2, we have that for any function f=g—agNa, with
g an arbitrary function in L%(u), with compact ly-support A and A and
o defined as in Step 1,

)| nte, gt TSR AN,

Thus,

v(g) — 1u(g)|<c (g, &) maX{ZLAlI'\’l Al

+log| [V(Na,) — 1(Na))|

using (3.5). To complete the proof, we need to prove the result for the spe-
cial function Ny,.

Let Aj=U I, Vi verifying (i) and (ii) as before.

To simplify the notation, define N; = Ny,. Also define A; ;=V;UV; and
fij =Ni—ajN;, o= M(NAW» Ni)/M(NA”, Nj). By Proposition 4.4,
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Inequality (4.16) (SMC) and the properties of the sets V; there exists a
positive constant oo =a(R, zo,8) such that o; j>a , Vi, j € I’Al.
Define

Rij =v(Ni) — u(N;) —aij [v(Nj) — w(N)].

Applying Lemmas 3.1 and 3.2 to the function

fi,j=Ni—a; jNj we have that
d
dmax{l,\/g}

sup |R; jI<czl
ijely, z|A|

By conservation law, ZiGI'AI [v(N;) — w(N;)]=0. Then,

—{ > i} PWN) —nWNpl= ) Rij.

. / . /
ze]Al ze]Al

Thus,

e dmax{l,,/zlg}

—z
T Z|A|

iely "i.j

|V(N')—M(N‘)|—'—
’ ! Zlel/ o, j

and, by (3.5), we obtain

lorg [V (Na,) — i(Na )| < e (g, 8)7 maX{Z'ZA'I'\f Aal

The proof of the theorem is finished. |

3.1. Proof of Lemmas 3.1 and 3.2
3.1.1. Proof of Lemma 3.1
Define the sets

E={xeA’|dx AR},
F =A\(AUE)
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and let

. P A
Gi(n) = p(e'o™r),

Hy(n) = €7 NE@),
Ko = e 7500

By Markov property, we can write that
u(f, T = u(F, e85 = (HiG Ky, 5 (F, e71¥57508)) 4 R,

where R, =u (HthKtuZ,g(eiﬁNﬁ) [Mz,z(f)—u(f)]).
By Proposition 4.6 and the fact that IA| << |[A]/2, we have

1Gelloe < e (3.6)
Thus we can prove the bound

no 172
/ IRyl di < 88T
- Al

(3.7)
provided that the constant M appearing in the definition of A verify M >
max{%, %}. Indeed, if z >|A|7%, we can write

IRl < ||Gt||oou( sup ‘M%(f)—u%(f)‘)
n,n' e
<|IGi oo @ p(g, g)'/2e™™M 102l 1y Corollary 2.7

o2 (g, )?

<ae
h |A2

by (3.6)

provided that M>2/m. If z<|A|~¢, the constant m in property (SMC) is
proportional to —log z (see Lemma 4 in ref. 13) and then, using again
Corollary 2.7 and (3.6),

L2 (8. )2

IRI<IIGellooa (g, ) 2e M < are NG

and (3.7) follows provided M > 2/e.
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We thus have to study u(|u, x(f.e¢'7 Nx)|), where Nx =Nz — i, x
(N3). We distinguish two cases: z>|A|™° and z<|A|7°.
Case z=|A|7¢. By a Taylor expansion up to the second order

It

(g (fo T NS (i 5@ N3) — g, 5 (Na,. N7)|) (3.8)
12 o, o
+@“('“zl(g’Nz)|+|“glluz,z(NA1,NZ)|) (3.9)
+3,
where

3
! - 5.3 v 503
03< =i (a2 5 @ INE P+ ltel e, Z Ny 1N )] )

Let us start by (3.8), remembering the definition (3.4) of «g, it can be
bounded by

I'LZ,Z(gﬂ NZ) ~ . i
{’m ‘M(NA"NA)_“’LA(NAI’NA)‘
MZ,Z(NAI,NZ) o )
‘m‘ 1 X8 NX) —M(g,NA)H,

Let {Qil}ier; the 2R + §-cubes of the partition of A. Then
|MZ§(5_’»NQ,-)_M(§»NQ,-)|

_ o [nIx08DKI 5 (No) +rUZDR(NG) if d(A. Q) > log|Al.
S AP | u? 2(8INg) + 12 K (BDRT 5 (N, if d(A, 0) < ¥ log]Al,

where we obtained the first inequality by the (SMC) property and the sec-
ond one by Corollary 2.7. Thus,

M(|H‘Z,Z(5_”NZ)_agﬂz,Z(NAJVZ)‘)

<M<‘HZ,Z(§7NZ)—M(£’,NZ)’> +|aglu(|uz,z(NA],Nz)—M(NA],Nz)|>

~ 1

A - 1 1 (g,9)?
<e2L (113D +1(8.)7 EAID < =5 (3.10)

A2 A2 ~

Concerning (3.9), by points 5 and 6 of Proposition 4.4 and inequality
(4.16), we have
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2
t _ o _ =~

st (I 5 BRI+l 5N, F3)1)

12 2 max{z|Aj|, v/z| Ay}
z|A '

<cu(gs 8) (3.11)

For 83, we have by Schwarz inequality, points 2 and 3 of Proposition 4.4,
(3.5) and (4.16)

jof? R - 5
6 < —5 ({1 30BINZ D) + 11, 508D 30F51)

+ o] {M,Z(le | INxI®) + 1, Z(INa, D“Z,Z('ﬁzp)])
12 max{z|Aj], (z|Ag])3}1/2
3
(z|A])2

A
< culg 9)'? % (3.12)

(log |A])?

< cul(g. )

where we used that z>|A|™¢ in the last inequality.
Combining (3.10), (3.11) and (3.12) and using the fact that |A|<k |A], we
finally get

max{z|Al, Vz|Al}
Z|A|

(£ AN < i 2 3
plp, x(free™ND<c (g, )2 (1 +17+11°)

provided that M > 4/m. Using (3.6) and integrating in dr the result of
lemma 3.1 follows for z>|A|7%.
Case z<|A|7¢. By Taylor expansion up to the first order

: LN« 1] o= - s
wlp, 3(F.e'aV8)) < o r(r 3@ NR) —ag i, 5x(Nay, N3))|)

16 (3.13)

where

2
1 _ -~ - o~
02< 55 h (| 2@ INZIP) + logl e, 5 (W, INGP)) -

The first-order term (3.13) can be estimated as in the case z>|A|™¢ (see
(3.10)). For &, by Schwarz inequality, points 1 and 2 of Proposition 4.4,
using (4.16) and that now |A| is proportional to |A| we have

1,2 max{z|A[, vz|Al}
Z|A| '

H<erPu(g, g)
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Therefore

max{z|Al|, /z|Al}

z|Al

i, 5 (f. é7MD< e (g, )2 (] +1%)
Using (3.6) and integrating in dr we obtain Lemma 3.1. |

3.1.2. Proof of Lemma 3.2

Fix a real number M; >> 1. We distinguish two cases. Case I:
a}MfHS. We write that

o -
/ p(ee Ny di=1+ I,

—To

where

M, g
11=/ p(e'= ™) dt,
—M;

and

12:/ w(esny dr .
M <|t|I<mo

By Proposition 4.6 and Remark 4.8, we have that |Ir|<e
D(R, z9,8). So we have to study I;.

Let V a lp=2R + §-regular subset of A with the properties: (i) it can
be written as the union of ly-regular subsets V;, ie, V =U¢p, Vi, and
(i1) |A\V|/|V|<M1_1; d(V\V;j, Vj) 22R+6; diam|V;|<Milp and [A|/|V]>
1/2. To simplify the notation let Ny =Ny — u; v(Ny). We write

2
-DM{ p =

M(eiﬁﬁA) =i (eiﬁ{NA\V"'”LV(NV)};LZYV(ei%NV)>
N
= (l/«z,V(el“NV)>

i (uz,v(eiiﬁv) (eié{NA\VW“NV” - 1)) (3.14)

Since the measure u, y factorize, we have that

N iLNyy iL [Ny, —pz v, (Nv)I !
Fy (=)= v (€7™) =T jepy pe v, (e 1710 )-]‘I[ij<;>.
JE€ly



1036 Cancrini and Tremoulet

By Taylor expansion up to the second order we get

2
t t
FVj(;)ZI_FH’Z,Vj(NVjv NVj)+st

where
It]? It]?

t
RIS 3ty (INv; = vy (Nv) )2 5 (Milo) ez, v, (N, Nv)

(using the (SMC) property).
By point 1 of Proposition 4.4 and (4.8) we have

Z./elvﬂz,vj(NVj»NVj)<i Z,ZIV,-I< AVI_, A

o2 SDy zIAl Dy Al Dy

’

where we used |A]/|V|>1/2 in the last inequality.
Therefore, for any ¢ e[—M1, M],

3+d

Z |R;|<D; ! <ch2 because o}Mi”S.
o

JEly

We then deduce that for M; large enough,
t 12 o
p(Fv) ) = | T | 1= Ssiey, Ny, Nvp) | ) (K3 IRjIS3e M2,
J

Thus, for M; large enough, we obtain that

My ¢ My [2 |
/ u\ Fv(=) dl?/ w0 | l==—uzv;(Ny;, Ny,) | | dt—=3cM
— M o —u, 2020 Y

M ) 1
2/ e " dt=3cM[ >c . (3.15)
—-M,

Notice that we can estimate 1—t2/202,uz,vj (Nvy;, Ny;) in terms of a neg-
ative exponential because we have the following upper bound (using point
2 of Proposition 4.4):

2 A L 2-2d+5) ZA 4 —(d+8)
ﬁﬂz,vf(ij,ij)SEMl 2Vil< 5 Iy M, .
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Up to this point, in order to have the result, we need to bound the inte-
gral of the second term of (3.14). By Taylor expansion up to the first order
and using Proposition 4.6 and (4.8), we get

m(Fv(é)(eiﬁWA\vWVWV” 1))|<UM(IFV( ONINM I+ l1tz.y (B)ID

< ':,—le*vf [N AV D + v (VD]

(3.16)
By Schwarz inequality and point 1 of Proposition 4.4, we have

| - |t A -1/2
(N VDS A= AN VD2 = e m Y
o o D

because |A\V|/|V|<M1_1 and by (4.16) 02>D; z|V|.
We now bound the second term on the right hand side of inequality
(3.16). By Schwarz inequality we have

1tz (N < (e v (N, iz v (N)) 2,

so that we can use Poincaré inequality given by Theorem 4.1 for the func-
tion f(’?)ZMZ,V(Nv) As

0 ifxeV,

D f=D}u! ,(Ny)=
L f=Dfuly(Ny) WIS N = (Ny) i xe AV

and by Corollary 2.7 and V €lF;, we have

Iy (Ny) =y (NV)| < ezl
so that by Poincaré inequality, i.e., Theorem 4.1
1 (12 (NV), pe v (NY)) < &y (g v (Nv), iz v (Nv) < ez |A\ V] .
Finally, using also (4.16), we have

2] 172
—M(lﬂzv(Nv)|)<—|f|M /
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We thus get
’l/« (Mz,V(eiéﬁv) (eiﬁ{NA\v+uz,v(1\_/v)}) ) ‘<C It] M71/2 —012’ (3.17)

combining (3.15) and (3.17), we obtain

M Ry M N ~1p
[ pn(@aVay dizc—¢ M, ltle™ " 2c—c'M] ">
— M —-M,

for M; large enough.

Case 2: o<M?*>. Due to point 1 of Proposition 4.4 if |A|'/? is large
compared to M”Frg this corresponds to extremely low particles density: by
(4.8), M{*> >0 > D| /N, with D} =Dj(z0. R, 8). We have

o
/ 117 N8Y dt =20 u(Na =N)>c u(Na=N).

—Tno

Therefore, we have to estimate w(Ny=N). As N < M2d+10 /D] we can find
subsets {V;}Y_, of A such that d(V;, V;)>2R, i#], |V|>a|A|D /M0,
0 <a <1 a suitable numerical constant Therefore

1 N
W(Ny=N) = —Z—/ e PHAW gy

Zn I 1_[/ dx
1ZVAN Dp \V
Z 454510
ZZ’ N! M;
D/ 1 N NN
Z < M2d+10 A ) N ZT, zc

where we used point 1 of Proposition 4.4. |

\\/

4. TECHNICAL RESULTS

Through all the Section ¢ will denote a positive constant which does
not depend on f, A, N and can change from line to line.
We first recall the Poincaré inequality proved in ref. 14 for a continuous
gas. Then, we give bounds on various kind of covariance for the finite vol-
ume grand canonical Gibbs measure when (CE) is assumed. Finally, we
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give a Gaussian upper bound on the characteristic function of the variable
Nj.

4.1. The Poincaré Inequality

For a given function f on Q, we let
D;f(a))::f(a)Ux)—f(a)), we, xeR?,

We define
_ n
NGRS /Adx ! (e PPEHA®) | Dt p2)

and D(E! ) :={f : E! ,(f) <o0}.
The following theorem is proven in ref. 14 (Theorem 2).

Theorem 4.1. Assume (CE). There exists a finite constant G =
G(R, z, B) such that for all neQ, A CR? the following inequality holds

WAL D<SGE ().

Remark 4.2. In fact, 5;7_ A is the Dirichlet form of a Glauber type
dynamics of a continuous gas (see ref. 14).

Remark 4.3. The Poincaré constant is such that G(R,z,8)< G
(R, 20, B), (see the proof of Theorem 2 in ref. 14, see also Corollary 5.1
in ref. 15).

4.2. Bounds on Covariance

The following proposition has been widely used in the proof of the
main result.

Proposition 4.4. Assume (CE). Fix § > 0 and take A € Fpg.s.
Then, for all n € Q and any function f € LZ(MZ A) with 2R + §-support
A C A, there exists a positive constant A = A(R, zg,§) such that the fol-
lowing statements hold

1. A71z]A|<u(Np)< Az|AL
2. ul A(NR)<Az|AL
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1! (N$<A max{z|Al, (z|AD?}.

1!\ (NS)<A max{z|Al, (z|AD3).

|l A(F NS A ]\ (f, )Y JZTAL

! A (FNDISAR! L (F. HY2 max{z|Al, Z[AT).
! A(Na, ND|<Az|A]

N W

where Ny =Ny — ! A (Np).
To prove Proposition 4.4, we need the following key estimates:

Lemma 4.5. Fix §>0. Let Q= Q;(x), x e R?. Then, for all ne g,

ul o(Ng) < €' z210], 4.1)
1l o(Ng) < % max{z|Ql, (z1Q))*) 4.2)
w! o(NG) < e max{z|Ql, (z1QD*), 4.3)
1l o(N§) < €919 max{z|Ql, z1Q)°) . (4.4)

Furthermore if / > 2R +§, there exists a numerical positive constant ¢
such that

Wl o(Ng)zc ez 0. 4.5)
Proof of Lemma 4.5. By definition, we have

+ook

—BH)(x)
Q Zk' /dexe oy,

Since the pair potential ¢=>0, we easily deduce the following bound
1§Zng<€Z|Q|_ 4.6)

Furthermore,

+00 >
Z _ n
Wl o N =3 kil o (N =F) =~ Z S R
k=1 =1
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Using that ¢ is positive and (4.6), we get

PraiY
w! o (N )<—|Q| <z10/e99) .
Z, Q Q Z

z,0
Moreover,

1 n
1 n 1= —BHp(x)
“z,Q(NQ)>'““z,Q(NQ—1)—ZZQZ/de e Mot

As [ is strictly bigger than 2R, one can construct a cube 0 C Q such
that Vx e Q, H) (x) =0 (because there is only one particle in the cube Q).
Therefore, 1) Q(NQ)>z|Q|/Z’7 Thus

z2101e A9 <l [ (Ng)<z]Qle19). 4.7

As there exists a numerical positive constant ¢ such that |é|>c’l|Q| the
bound (4.5) follows.
Inequality (4.1) can be obtained by

, +o0 5 1 +oo |Q|k
nl (NG =) Kul o(No=k) < 7 >
k=1 Z 0 k=1
= ZTZIQIeZ‘Q‘(lJerQI)
2,0

< 210169911 + 2] Q)),

where we used again that ¢ is positive and (4.6).
The proofs of (4.3) and of (4.4) are analogous. |

Proof of Proposition (4.4). To simplify the notations, we write u =
,uZ’A, f=f—u(f) for any observable f, and lo=2R+36. As A el let
{Q;}ic1, be the partition of cubes of side lp of A. We also use |Q;|=|0|=
19V iely and define B=B(R, z9, ) = %02l

1. Using the partition of A, (4.1) and (4.5), the result follows.

2. Using the partition of A we can write

n(ND< Y uNo. No)+ > n(Ng)
i, jeln;i#j iely
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and by (SMC), (4.1) and (4.1), we obtain that

w3 <a 30 uNo)u(No)e ™" @rei 437 u(Ng,)
i jelnist] rela
A A
< aB? Z2|Q|2||_Q||_|_B %max(z|Q|,Zz|Q|2)-

The result follows.

3. We can write

RINOS Y N, No, Noy Noy,)|- 4.8)

i1,02,13,i4€lp

So, using Lemma 4.5 and the (SMC), we can bound
|'U“(NQ[1 NQ:'Z ]\_]Qi3 NQ[4)|
by

() B max{z|Q|, IQN*} if iy =iy =i3=i4;

(i) B max{z|Q|, (z|QD*} if i1 =ir#iz=is;

(iii) B max{z|Q|, (z|Q)?} e—’"d<Q"in4UQiz>+e—’""<Q"z’Qi4>] if ij=ip=
i,i3=j and ig=k with i # j, i #k;

(iv) B max{z|Ql, (z|Q)3}z|Qle™™4 @i -9 if iy =iy =iz =i, iy=j with
L]

(v) B max{(z|Q))?, (z|Q)*}e 41121304 §f d (i1, i5, i3,i4) >8R and all
cubes are different, where d(iy, iz, i3, i4):2£=1 d(Qiy, Ujzk Qi));

and the result follows.
4. The Proof is the same as point 3.

5. For j=1,2,..., let A;={Q;, ielp | jlo<d(Q;i, A)<(j+ Dlp}.
Call Nj=3 ;. Ng,. We write
J

[, NOIS2 D | N)|+ [ f Na)|- 4.9)

=1
By (SMC), (4.1) and Schwarz inequality, we have

|1 (f, N)| < a (L F DN e ™ <a B u(f, HYV? z|A e,
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and also

(£ ND| = |(f Ny |<an( F (N, Ny 2em!
< aVBu(f, H'? A e (4.10)

Therefore, as there exists a numerical constant ¢ such that |A;|<c(j +
4| A|, we have

lw(f. NpI<c u(f, )Y min{z| Al y/z|Alye ™™ (4.11)

with ¢/ =a min{B, v'B}.
On other hand, by Schwarz inequality,

(£, No) |< VB (f, H2VzlAL. 4.12)

Finally, by (4.9), (4.11) and (4.12), we get the result.
6. Let the A; be defined as in point 5. We write that

(£ ND| = (FNDI2Y  |u(FN; N - (4.13)

j<k

Using (SMC), Schwarz inequality and 2 -, we find

|L(fN;Np)|<

/ZIA T min{z| Ag|/z[Ak} e " &=D1if j>1 and k>2j,

cnlf. ) /1A V1A el if j>1 and k<2j,
KA VZIAT min{z] Al, vZ[AT}e M if j=0and k>1,
max{z|Al, v/z|Al} if j=0 and k=0.

Using again the bound |Ag|<c (k+ 1)?|A|, the result comes from (4.13).

7. As above one has

[W(Na, NI D [N, NR)|. (4.14)

ielp

Applying 6. to each term in the sum the result follows. |
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4.3. Gaussian Upper Bound

Here, we prove a Gaussian upper bound for the characteristic func-
tion of the random variable Ny.

Proposition 4.6. Let A € Fopys, 6 > 0. For any ¢ € [—m, ], there
exists a positive numerical constant ¢ such that

| MZ’A(K”[NA_PLZA(NA)]) |< exp{_cze—z(2R+8)d |A|t2}_ (4.15)

Remark 4.7. Estimate (4.15) is called Gaussian upper bound. As in
the discrete case (see refs. 8 and 10), it is proven by assuming only finite
range and bounded interaction.

Remark 4.8. From inequality (4.15), it follows that
w! A(Na, Np)= Diz|Al, (4.16)

where D =2c e QR+

Proof. As AeFy, lp=2R+$, let {Q;}ic1, be the collection of cubes
of the partition of A. To simplify, we write u=u] ,, |Q|=1Q;l, i € Ix.
Let Ag={Q; ielp | d(Qi, Q;)>2R}. There exists a numerical posi-
tive constant ¢; > 1 such that |[Ag|>(1/c1)|Al.
We write

| ,bL(eitNA) |= | M(eithEIAR NQ./ eitNA\AR) |

- ,
= | M(HjelARMz,Qj(e" Q-’)MA\AR(EHNA\AR)) |
n
< [sup| ny @™y || |
jooo T

where we used DLR Eq. (2.1) and n =[]
Set g;(t)= ‘MZQ/(eI’NQf) . Using that V x>0, x<e® ~1/2 we have

1/,
(1)< —g5;()— . .
g,(t)\eXp[z (g,(t) 1)} (4.17)
By an explicit computation, we obtain

B —1=— [Vargj (cos(tNg,)) +Vary, (Sin(tNQj))] ,
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where Varzj stands for the variance w.r.t. we 0
But, as r €[—m, 7],
Vargj (cos(tNg;)) + Vargj (sin(tNQj))

- % kZ {120, (Ng, = o (Ng, =n)
n
X [(cos(tk) —cos(tn))* + (sin(tk) — sin(tn))z] }
> %M;Qj (Ng, =001 (No,=1) [(cos 1 = 1) +sin ]
> %M;Qj(NQj=0)ungj(NQj=1)cr2.

By (4.6), u?y (No;=0)= l/ngnge*ZIQj\.
On the other hand, proceeding as in the Proof of Lemma 4.5, we have

" . _cz0l
MZ,Q/.(NQJ- —D?m-

Thus

g2 — 1<~ % 2101 1| o2
and then by (4.17),

8j()< exp{_%e—2Z\Q|Z|Q|t2}
$O

: Cy C
(e )| < expl—= ¢ €0z Ag| ).
The result follows using that |AR|>C]_1|A|. |
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