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Comparison of Finite Volume Canonical and Grand
Canonical Gibbs Measures: The Continuous Case
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Received January 19, 2004; accepted July 13, 2004

We consider a continuous gas with finite range positive pair potential and we
assume that the cluster expansion convergence condition holds. We prove a
sharp bound on the difference between the finite volume grand canonical and
canonical expectation of local observable. The bound is given in terms of the
support of the observable, of its grand canonical variance and of the volume
on which the system is confined.
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1. INTRODUCTION

The equivalence of ensembles is one of the central problems of statistical
mechanics and traces back to Gibbs (1902). As far as the thermodynamic
functions is concerned under suitable conditions on the interaction, this
question is already well understood.(1,2) The equivalence of ensembles as
been studied also at the level of measures and important results have been
obtained. Classical results state that the difference between the canonical
and grand canonical expectation of a local observable vanishes when the
volume goes to infinity and the support of the observable is kept fixed (see
e.g., refs. 3–5 and references therein). Recently the possibility to obtain
sharper estimates has been widely investigated and the main motivations
come from:

1Dipartimento di Matematica Università di L’Aquila and INFM Unità di Roma “La
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(i) the theory of stochastic spin exchange dynamics reversible w.r.t.
the canonical Gibbs measure of finite volume,(6,7)

(ii) the theory of Renormalization group pathologies(8)

(iii) the theory of random matrices.(9)

In order to improve over classical results different methods have been
envisaged, mostly for lattice compact spins models (see e.g., refs. 7, 8 and
10). In particular, in ref. 10 the case of a general lattice discrete spin model
satisfying a suitable mixing property has been analyzed and optimal esti-
mates has been established. Contrary to the methods developed in ref. 7
or 8, the techniques of ref. 10 completely avoid proving a local central
limit theorem and pose negligible restrictions on the size of the support
of the observable. In the present paper, motivated by a rigorous analysis of
the so-called Boltzmann–Gibbs principle for the equilibrium fluctuations of
interacting Brownian and Ornstein-Uhlenbeck particles processes,(11,12) we
extend the approach of ref. 10 to a continuous system of particles inter-
acting through a finite range positive pair potential. In particular we prove
that, under a suitable smallness condition on the activity z (see condition
(CE) before Theorem 2.1),

∣∣ν(f )−µ(f )
∣∣�C µ(f,f )1/2 max{z|�|,√z|�|}

z|�| , (1.1)

where ν and µ are, respectively, the canonical and grand canonical Gibbs
measure in the region �, z is the activity and it is such that the mean
grand canonical number of particles coincides with the (fixed) canonical
value, |�| is the support of the observable f and C is a positive constant
independent of f .

In the case of the continuous gas, the main difficulty comes from the
fact that the number of particles that can be contained in any fixed and
finite volume is not bounded. This problem is essentially bypassed assum-
ing the (CE) condition. This condition plays an important role not only
because it assures a strong mixing property (decay of correlations) of the
grand canonical measure, crucial in the proof of (1.1), but also because
it gives a tight control on the large deviations of the local number of
particles.

Our result improves over the one obtained by Spohn in 1986. Indeed,
in Lemma 13 in ref. 13, it is proven that, if z satisfies (CE) and if µ̂

denotes the unique infinite volume Gibbs measure, then

lim
�↗Rd

|�| µ̂
[
(ν(f )−µ(f ))2

]
=0, (1.2)
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where f is a C∞-function with compact support, which depends on the
number of particles on finite regions and such that µ̂(f )=0.

The paper is organized as follows. In Section 2, we introduce the
notations and give the main theorem. In Section 3, we prove the theorem
using the technical results contained in Section 4.

2. NOTATIONS AND RESULTS

Let B(Rd) the collection of finite (measurable) subsets of R
d . For A∈

B(Rd), we denote by |A| the Lebesgue measure of A. The configuration
space is the set � of all locally finite subsets of R

d :

�
.={ ω⊂R

d : card(ω∩A)<∞ ∀A∈B(Rd) },

where card(A) stands for the cardinality of A. We define the counting vari-
ables NA : ω → card(ω ∩A), where A∈B(Rd). Given η,ω ∈�, we let η	ω

be the symmetric difference of η and ω, i.e., η	ω
.= (η ∪ ω) \ (η ∩ ω). For

�∈B(Rd), we consider the finite volume configuration space

��
.={ω⊂� :ω is finite}

A function f is called a local function if there exists a set A∈B(Rd) such
that f depends only on the configuration inside A, i.e., on ω ∩A, and A

will be its support.
For x, y ∈R

d , the Euclid distance is denoted by d(x, y) and we write
|x| for d(x,0). Finally, by Ql we denote the cube of all x = (x1, . . . , xd)∈
R

d such that xi ∈ [0, l]. If x ∈R
d , Ql(x) stands for Ql +x.

*Regular sets: a finite subset � of R
d is said to be a l–regular, l ∈R+,

if there exists x ∈R
d such that � is the union of a finite number of cubes

Ql(x
i +x) where xi ∈ lZd . This means that there exists a set of indexes I�

such that �=∪i∈I�Ql(x
i +x). We denote the class of all such sets by Fl .

The l-support of a function f of support A is the smallest l-regular set �

such that A⊂�. Given a set �∈Fl , we define ∂−
r �

.={x ∈� | d(x,�c)� r}
for some positive real r.

*The Hamiltonian: Let φ : R
d −→ R be a measurable function. We

assume the following on the pair potential φ:

(1) φ is an even function on R
d and it has a finite range: take R >0

such that φ(x)=0 if |x|>R.

(2) φ is positive.
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For � a finite measurable subset of R
d , the Hamiltonian H� :�−→R

is given by

H�(ω)=
∑

{x,y}⊂ω

{x,y}∩��=∅

φ(x −y) .

For ω and η in �, we define H
η
�(ω)

.=H�(ω�η�c), where
ω�η�c = (ω∩�)∪ (η∩�c). �c is the complement of � and η is called the
boundary condition.

*The Gibbs measures: We denote by µ
η
z,�(f ) the expectation of f

w.r.t. the grand canonical Gibbs measure µ
η
z,� with activity z, boundary

condition η, volume �, while µz,�(f ) denotes the function ω →µω
z,�(f ).

Explicitly, for all measurable functions f on ��, we have

µ
η
z,�(f )= 1

Z
η
z,�

+∞∑
k=0

zk

k!

∫
�k

e−βH
η
�(x)f (x) dx,

where we have identified the functions on �� with the symmetric func-
tions on ∪∞

n=0�
n, Z

η
z,� is the appropriate normalization factor. Moreover,

we write µ
η
z,�(f, g) to denote the covariance of f and g w.r.t. the mea-

sure µ
η
z,� (when it exists). We denote by ν

η
�,N(f ) :=µ

η
z,�( f | N� =N) the

expectation of f w.r.t. the canonical Gibbs measure with N particles, on
the volume �, and with η as boundary condition. Explicitly

ν
η
�,N(f )= 1

Z
η
�,N

∫
�N

e−βH
η
�(x)f (x) dx,

where Z
η
�,N is the appropriate normalization factor.

We omit for simplicity here and in almost all the paper the dependence on
β.

For a subset X∈�, we set µz,�(X)=µz,�(1X), where 1X is the indica-
tor function on X. The grand canonical Gibbs measure satisfies the DLR
compatibility conditions

µ
η
z,�(µz,V (X))=µ

η
z,�(X) ∀X ∈F ∀V,�∈B(Rd), V ⊂�. (2.1)

*Cluster Expansion and Strong Mixing Condition: In order to prove
our main result, we need some kind of mixing property of the grand
canonical Gibbs measure, which can be proved under the hypothesis of a
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convergent cluster expansion. An explicit condition which guarantees this
convergence is the following: let ẑ0(β,φ)

.= (e ∫
Rd (1− e−βφ(q)) dq

)−1
. Then

assume that

0<z� z0 <
1
3

ẑ0(β,φ) (CE)

Under hypothesis of positive interaction and (CE), there exists a unique
grand canonical Gibbs measure (see Ref. 1).

Here is our main theorem.

Theorem 2.1. Assume (CE). Let δ>0 and N be a possible value of
the number of particles. For a fixed � ∈ F2R+δ, we assume that, given a
boundary condition η∈�, the grand canonical Gibbs measure is such that
µ

η
z,�(N�) = N and set ν

η
�,N(·) := µ

η
z,�(· |N� = N). Then, for any function

f ∈ L2(µ
η
z,�) whose 2R + δ−support � satisfies |�|� |�|1−4ε, ε ∈ (0,1),

there exist C =C(z0,R, ε, δ)> 0 and v = v(z0,R, ε, δ)> 0 such that for all
� such that |�|�v

∣∣νη
�,N(f )−µ

η
z,�(f )

∣∣�C µ
η
z,�(f, f )1/2 max{z|�|,√z|�|}

z|�| .

If the function f has bounded uniform norm ||f ||∞ the result is the
same as the discrete case: µ

η
z,�(f, f )� 4 ||f ||2∞ min{z|�|,1} (see ref. 10).

The estimates we use to prove the above result are quite similar to those
of the discrete case in ref. 10. We give here all the details for complete-
ness and because to obtain the L2-norm we had to refine some of them.
The L2-norm is more suitable in the continuous case because many ob-
servables, as for example the number of particles in a finite volume, have
unbounded uniform norm.

Remark 2.2. As stated above we assume that µ
η
z,�(N�) = N , this

means that the activity is conveniently chosen from the beginning as func-
tion of N,� and η. This has no consequences on the DLR property of the
Gibbs measure since � and η are kept fixed once and for all.

Remark 2.3. It will be clear from the proof that, if z� z1 > 0 uni-
formly in |�|, the condition |�|� |�|1−4ε can be relaxed to |�̃| = o(|�|)
(see definition (3.3) of �̃).

Remark 2.4. To prove the result (1.2), Spohn needed more than the
condition (CE). Indeed, he took 0<z<0.28 ẑ0(β,φ) (see ref. 13).
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In order to prove the theorem we need, as we stressed above, a mi-
xing condition for the grand canonical Gibbs measure. One can show that
the following strong mixing condition holds (see Corollary 2.4 in ref. 14
or Lemma 4 in ref. 13 for a proof):

Proposition 2.5. (Property (SMC)). Let z and β such that (CE)
holds. There exist two constants α = α(R, z, β) and m = m(R, z, β) such
that ∀ �, �f , �g ∈B(Rd) such that �f ⊂�, �g ⊂�, d(�f ,�g)>2R and
min(|�̄R

f |, |�̄R
g |)� exp(md(�f ,�g)), we have for f ∈F�f

and g ∈F�g

|µη
z,�(f, g)|�α µ

η
z,�(|f |)µη

z,�(|g|) e−md(�f ,�g),

where �f and �g are respectively the supports of f and g and ĀR .={x ∈
R

d d(x,A)�R} for A⊂R
d .

Remark 2.6. The constants α and m are respectively increasing and
decreasing as functions of the activity z, 0 <z < 1

3 ẑ0, and for small z the
constant m is proportional to − log z (see Lemma 4 in ref. 13).

This result has an immediate consequence, which will be useful for
our purpose, see ref. 14 for the proof.

Corollary 2.7. If (CE) holds, there exist two constants α̃= α̃(R, z, β)

and m̃= m̃(R, z, β) such that for all �,�f ∈B(Rd), �f ⊂�,

|µη
z,�(f )−µω

z,�(f )|� α̃ µ
η
z,�(|f |) e−m̃ d(�f ,η	ω)

for all ω,η∈�, for all f ∈F�f
such that d(�f , η	ω)>3R, and

|�̄R
f |� exp[ m̃ (d(�f , η	ω)−R) ].

3. PROOF OF THEOREM 2.1

Through all the section c, c′ will denote positive constants which do
not depend on f,�,N and can change from line to line.
Fix �∈F2R+δ for some δ >0. To simplify the notations, we use

µ
.= µ

η
z,� ,

ν
.= ν

η
N,� ,

σ
.= µ(N�,N�) ,

h̄
.= h−µ(h) ∀h µ-integrable .
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Let χN be the indicator function of the event {N�(ω)=N}. Then we write
that

ν(f )−µ(f )= µ(f,χN)

µ(χN)
. (3.1)

Using the Fourier transform, we can express χN as

χN(ω)= 1
2πσ

∫ πσ

−πσ

dt ei t
σ

N̄�(ω) .

Therefore (3.1) becomes

ν(f )−µ(f )=
∫ πσ

−πσ
dt µ (ei t

σ
N̄�, f )∫ πσ

−πσ
dt µ (ei t

σ
N̄�)

. (3.2)

The proof consists on a separated study of the numerator (Step 1) and the
denominator of (3.2) (Step 2). We conclude the Proof of Theorem 2.1 in
Step 3.

Step 1: Study of
∫ πσ

−πσ
dt µ(ei t

σ
N̄�, f ).

We start by proving an upper bound for a rather special class of functions:
the ones which have, roughly speaking, almost zero covariance with N�.
In Step 3, using the conservation law N� =N , we shall extend the result
to more general functions.
Let l0 =2R + δ, and {Qi}i∈I� the partition of �∈Fl0 . Given ε ∈ (0,1) and
V ∈Fl0 , V ⊂�, we define, for any positive large number M, the set

Ṽ
.=
{

{ Qi , i ∈ I� | d(Qi,V )�M log |�| } if z�|�|−ε,

{ Qi , i ∈ I� | d(Qi,V )�M } if z�|�|−ε.
(3.3)

Let g be a local function of l0-support � and define f
.=g −αgN�1 . The

set �1 ⊂�, �1 ∈Fl0 , has the following properties: (i) it can be written as
�1 =∪I ′

�1
Vi where for all i ∈ I ′

�1
, there exist positive numerical constants

ci, ki such that |Vi |= ci l
d
0 , |∂−

l0
Vi |=ki l

d
0 and ci k

−1
i �2z0 ld0 e3z0 ld0 ; and (ii)

there exists a positive numerical constant κ such that κ−1|�|� |�1|� κ |�|.
The l0-support of f is �f

.=�∪�1. To simplify the notation, we use �̃f
.=

�̃. Let us define

αg
.= µ(g,N�̃)

µ(N�1 ,N�̃)
. (3.4)
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By Proposition 4.4, the above properties of �1 and Remark 4.8, αg is well
defined and satisfies

|αg|� c

√
µ(g, g)

z|�1|
. (3.5)

Then, the following lemma holds.

Lemma 3.1. There exists a positive constant C1 = C1(z0,R, ε, δ)

such that, if f =g −αgN�1 ,

∫ πσ

−πσ

dt
∣∣µ(ei t

σ
N̄�, f )

∣∣�C1 µ(g, g)
1
2

max{z|�|,√z|�|}
z|�| .

Step 2: Study of the denominator
∫ πσ

−πσ
µ(ei t

σ
N̄�) dt . We have the fol-

lowing Lemma:

Lemma 3.2. There exists a constant C2 =C2(z0,R, δ) such that∫ πσ

−πσ

µ(ei t
σ

N̄�) dt�C2.

Step 3: We conclude the Proof of Theorem 2.1.
By Lemmas 3.1 and 3.2, we have that for any function f =g−αgN�1 with
g an arbitrary function in L2(µ), with compact l0-support � and �1 and
αg defined as in Step 1,

∣∣ν(f )−µ(f )
∣∣� cµ(g, g)

1
2

max{z|�|,√z|�|}
z|�| .

Thus,

∣∣ν(g)−µ(g)
∣∣� cµ(g, g)

1
2

max{z|�|,√z|�|}
z|�| + |αg|

∣∣ν(N�1)−µ(N�1)
∣∣

using (3.5). To complete the proof, we need to prove the result for the spe-
cial function N�1 .
Let �1 =∪I ′

�1
Vi verifying (i) and (ii) as before.

To simplify the notation, define Ni
.= NVi

. Also define �i,j
.= Vi ∪ Vj and

fi,j
.= Ni − αi,jNj , αi,j

.= µ(N�̃i,j
,Ni)/µ(N�̃i,j

,Nj ). By Proposition 4.4,
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Inequality (4.16) (SMC) and the properties of the sets Vi there exists a
positive constant α0 =α0(R, z0, δ) such that αi,j�α0 , ∀i, j ∈ I ′

�1
.

Define

Ri,j
.=ν(Ni)−µ(Ni)−αi,j

[
ν(Nj )−µ(Nj )

]
.

Applying Lemmas 3.1 and 3.2 to the function
fi,j

.=Ni −αi,jNj we have that

sup
i,j∈I ′

�1

|Ri,j |� c z ld0

max
{
1,

√
zld0

}
z|�| .

By conservation law,
∑

i∈I ′
�1

[ν(Ni)−µ(Ni)]=0. Then,

−{ ∑
i∈I ′

�1

αi,j

} [
ν(Nj )−µ(Nj )

]= ∑
i∈I ′

�1

Ri,j .

Thus,

|ν(Nj )−µ(Nj )|=
∣∣∣∣
∑

i∈I ′
�1

Ri,j∑
i∈I ′

�1
αi,j

∣∣∣∣� c

α0
z ld0

max
{
1,

√
zld0

}
z|�|

and, by (3.5), we obtain

|αg||ν(N�1)−µ(N�1)|� cµ(g, g)
1
2

max{z|�|,√z|�|}
z|�| .

The proof of the theorem is finished.

3.1. Proof of Lemmas 3.1 and 3.2

3.1.1. Proof of Lemma 3.1

Define the sets

E
.= { x ∈ �̃c | d(x, �̃)�R } ,

F
.= �\ (�̃∪E)
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and let

Gt(η)
.= µ

η
z,F (ei t

σ
N̄F ) ,

Ht (η)
.= ei t

σ
N̄E(ω) ,

Kt (η)
.= e

−i t
σ

µ
η

z,�̃
(N̄�̃)

.

By Markov property, we can write that

µ(f, ei t
σ

N̄�)=µ(f̄ , ei t
σ

N̄�)=µ
(
HtGtKtµz,�̃(f̄ , ei t

σ
[N�̃−µ�̃(N�̃))

)
+Rt ,

where Rt =µ
(
HtGtKtµz,�̃(ei t

σ
N̄�̃ )

[
µz,�̃(f̄ )−µ(f̄ )

])
.

By Proposition 4.6 and the fact that |�̃|<< |�|/2, we have

||Gt ||∞ � e−c t2
. (3.6)

Thus we can prove the bound

∫ πσ

−πσ

|Rt | dt � c
µ(g, g)1/2

|�|2 (3.7)

provided that the constant M appearing in the definition of �̃ verify M >

max{ 2
m

, 2
ε
}. Indeed, if z� |�|−ε, we can write

|Rt | � ||Gt ||∞µ

(
sup

η,η′∈�

∣∣∣µη

�̃
(f̄ )−µ

η′
�̃

(f̄ )

∣∣∣)
� ||Gt ||∞ α̃ µ(g, g)1/2e−m̃M log |�| by Corollary 2.7

� α̃ e−c t2 µ(g, g)1/2

|�|2 by (3.6)

provided that M�2/m̃. If z� |�|−ε, the constant m in property (SMC) is
proportional to − log z (see Lemma 4 in ref. 13) and then, using again
Corollary 2.7 and (3.6),

|Rt |�||Gt ||∞ α µ(g, g)1/2e−mM�α e−c1 t2 µ(g, g)1/2

|�|Mε

and (3.7) follows provided M >2/ε.
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We thus have to study µ(
∣∣µz,�̃(f̄ , ei t

σ N̂�̃)
∣∣), where N̂�̃ = N�̃ − µz,�̃

(N�̃). We distinguish two cases: z�|�|−ε and z�|�|−ε.
Case z�|�|−ε. By a Taylor expansion up to the second order

µ(|µ�̃(f̄ , ei t
σ

N̂�̃ )|)� |t |
σ

µ
(∣∣µz,�̃(ḡ,N�̃)−αgµz,�̃(N̄�1 ,N�̃)

∣∣) (3.8)

+ t2

2σ 2
µ
(
|µz,�̃(ḡ, N̂2

�̃
)|+ |αg||µz,�̃(N̄�1 , N̂

2
�̃
)|
)

(3.9)

+ δ3,

where

δ3�
t3

σ 3
µ
(∣∣µz,�̃(ḡ, |N̂�̃|3)∣∣+|αg|

∣∣µz,�̃(N̄�1 , |N̂�̃|3)∣∣) .

Let us start by (3.8), remembering the definition (3.4) of αg, it can be
bounded by

µ

{∣∣∣µz,�̃(ḡ,N�̃)

µ(N�1 ,N�̃)

∣∣∣ ∣∣∣µ(N�1 ,N�̃)−µz,�̃(N�1 ,N�̃)

∣∣∣
+
∣∣∣µz,�̃(N�1 ,N�̃)

µ(N�1 ,N�̃)

∣∣∣ ∣∣∣µz,�̃(ḡ,N�̃) −µ(g,N�̃)

∣∣∣} .

Let {Qi}i∈I�̄
the 2R + δ-cubes of the partition of �̃. Then

|µσ
z,�̃

(ḡ,NQi
)−µ(ḡ,NQi

)|

� c

|�|Mm/2

{
µσ

z,�̃
(|ḡ|)µσ

z,�̃
(NQi

)+µ(|ḡ|)µ(NQi
) if d(�,Qi)� M

2 log |�| ,
µσ

z,�̃
(|ḡ|NQi

)+µσ
z,�̃

(|ḡ|)µσ
z,�̃

(NQi
) if d(�,Qi)� M

2 log |�| ,

where we obtained the first inequality by the (SMC) property and the sec-
ond one by Corollary 2.7. Thus,

µ

(∣∣µz,�̃(ḡ,N�̃)−αgµz,�̃(N̄�,N�̃)
∣∣)

�µ

(∣∣µz,�̃(ḡ,N�̃)−µ(ḡ,N�̃)
∣∣)+|αg|µ

(∣∣µz,�̃(N�1 ,N�̃)−µ(N�1 ,N�̃)
∣∣)

�c
|�̃|

|�|Mm
2

[µ(|ḡ|)+µ(g,g)
1
2 (z|�1|)

1
2 ]�c

µ(g,g)
1
2

|�|Mm
2 −1

. (3.10)

Concerning (3.9), by points 5 and 6 of Proposition 4.4 and inequality
(4.16), we have
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t2

2σ 2
µ
(
|µz,�̃(ḡ, N̂2

�̃
)|+ |αg||µz,�̃(N̄�1 , N̂

2
�̃
)|
)

�cµ(g, g)1/2 t2 max{z|�1|,
√

z|�1|}
z|�| . (3.11)

For δ3, we have by Schwarz inequality, points 2 and 3 of Proposition 4.4,
(3.5) and (4.16)

δ3 � |t |3
σ 3

µ
({

µz,�̃(|ḡ||N̂�̃|3)+µz,�̃(|ḡ|)µz,�̃(|N̂�̃|3)
}

+ |αg|
{
µz,�̃(|N̄�1 | |N̂�̃|3)+µz,�̃(|N̄�1 |)µz,�̃(|N̂�̃|3)

})
� cµ(g, g)1/2 max{z|�1|, (z|�1|)3}1/2

(z|�|) 3
2

(log |�|)2

� cµ(g, g)1/2 |�1|
|�| , (3.12)

where we used that z�|�|−ε in the last inequality.
Combining (3.10), (3.11) and (3.12) and using the fact that |�1|�κ |�|, we
finally get

µ(|µz,�̃(f, ei t
σ

N̂�)|)� cµ(g, g)
1
2 (|t |+ t2 +|t |3) max{z|�|,√z|�|}

z|�|
provided that M > 4/m. Using (3.6) and integrating in dt the result of
lemma 3.1 follows for z�|�|−ε.
Case z�|�|−ε. By Taylor expansion up to the first order

µ(|µz,�̃(f̄ , ei t
σ

N̂�̃ )|) � |t |
σ

µ
(∣∣µz,�̃(ḡ, N̂�̃)−αg µz,�̃(N̄�1 , N̂�̃)

∣∣)
+ δ2 (3.13)

where

δ2 � t2

2σ 2
µ
(∣∣µz,�̃(ḡ, |N̂�̃|2)∣∣+|αg| |µz,�̃(N̄�1 , |N̂�̃|2)

)
.

The first-order term (3.13) can be estimated as in the case z�|�|−ε (see
(3.10)). For δ2, by Schwarz inequality, points 1 and 2 of Proposition 4.4,
using (4.16) and that now |�̃| is proportional to |�| we have

δ2 � c t2 µ(g, g)1/2 max{z|�|,√z|�|}
z|�| .
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Therefore

µ(|µz,�̃(f, ei t
σ

N̂�)|)� cµ(g, g)1/2 (|t |+ t2)
max{z|�|,√z|�|}

z|�| .

Using (3.6) and integrating in dt we obtain Lemma 3.1.

3.1.2. Proof of Lemma 3.2

Fix a real number M1 >> 1. We distinguish two cases. Case 1:
σ�Md+5

1 . We write that∫ πσ

−πσ

µ(ei t
σ

N̄�) dt = I1 + I2,

where

I1 =
∫ M1

−M1

µ(ei t
σ

N̄�) dt,

and

I2 =
∫

M1�|t |�πσ

µ(ei t
σ

N̄�) dt .

By Proposition 4.6 and Remark 4.8, we have that |I2|�e−D M2
1 , D =

D(R, z0, δ). So we have to study I1.
Let V a l0 =2R + δ-regular subset of � with the properties: (i) it can

be written as the union of l0-regular subsets Vj , i.e., V = ∪j∈IV
Vi , and

(ii) |�\V |/|V |�M−1
1 ; d(V \Vj ,Vj )�2R+δ; diam|Vj |�M1l0 and |�|/|V |�

1/2. To simplify the notation let N̂V
.=NV −µz,V (NV ). We write

µ(ei t
σ

N̄�) = µ
(
ei t

σ
{N̄�\V +µz,V (N̄V )}µz,V (ei t

σ
N̂V )
)

= µ
(
µz,V (ei t

σ
N̂V )
)

+µ
(
µz,V (ei t

σ
N̂V )

(
ei t

σ
{N̄�\V +µz,V (N̄V )} −1

))
(3.14)

Since the measure µz,V factorize, we have that

FV (
t

σ
)

.=µz,V (ei t
σ

N̂V )=�j∈IV
µz,Vj

(e
i t
σ

[NVj
−µz,Vj

(NVj
)]
)=

∏
j∈IV

FVj
(
t

σ
) .
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By Taylor expansion up to the second order we get

FVj
(
t

σ
)=1− t2

2σ 2
µz,Vj

(NVj
,NVj

)+Rj ,

where

|Rj |� |t |3
σ 3

µz,Vj
(|NVj

−µz,Vj
(NVj

)|3)�2
|t |3
σ 3

(M1l0)
d µz,Vj

(NVj
,NVj

)

(using the (SMC) property).
By point 1 of Proposition 4.4 and (4.8) we have∑

j∈IV
µz,Vj

(NVj
,NVj

)

σ 2
� A

D1

∑
j z|Vj |
z|�| � A

D1

|V |
|�| � 2

A

D1
,

where we used |�|/|V |�1/2 in the last inequality.
Therefore, for any t ∈ [−M1,M1],

∑
j∈IV

|Rj |�D2
M3+d

1

σ
� cM−2

1 because σ�Md+5
1 .

We then deduce that for M1 large enough,∣∣∣∣µ(FV (
t

σ
)

)
−µ

(
�j

[
1− t2

2σ 2
µz,Vj

(NVj
,NVj

)

])∣∣∣∣�3
∑
j

|Rj |�3 cM−2
1 .

Thus, for M1 large enough, we obtain that

∫ M1

−M1

µ

(
FV (

t

σ
)

)
dt �

∫ M1

−M1

µ

(
�j

[
1− t2

2σ 2
µz,Vj

(NVj
,NVj

)

])
dt−3 cM−1

1

�
∫ M1

−M1

e−c′ t2
dt −3 cM−1

1 �c . (3.15)

Notice that we can estimate 1 − t2/2σ 2µz,Vj
(NVj

,NVj
) in terms of a neg-

ative exponential because we have the following upper bound (using point
2 of Proposition 4.4):

t2

2σ 2
µz,Vj

(NVj
,NVj

)� A

2
M

2−2(d+5)

1 z|Vj |� zA

2
ld0 M

−(d+8)

1 .
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Up to this point, in order to have the result, we need to bound the inte-
gral of the second term of (3.14). By Taylor expansion up to the first order
and using Proposition 4.6 and (4.8), we get

|µ(FV (
t

σ
) (ei t

σ
[N̄�\V +µz,V (N̄V )] −1) )|� |t |

σ
µ(|FV (

t

σ
)| [|N̄�\V |+ |µz,V (N̄V )|])

� |t |
σ

e−ct2
[µ(|N̄�\V |)+µ(|µz,V (N̄V )|)] .

(3.16)

By Schwarz inequality and point 1 of Proposition 4.4, we have

|t |
σ

µ(|N̄�\V |)�A
|t |
σ

(z|�\V |)1/2 � A

D1
|t |M−1/2

1

because |�\V |/|V |�M−1
1 and by (4.16) σ 2�D1 z|V |.

We now bound the second term on the right hand side of inequality
(3.16). By Schwarz inequality we have

µ(|µz,V (N̄V )|)� µ
(
µz,V (NV ),µz,V (NV )

)1/2
,

so that we can use Poincaré inequality given by Theorem 4.1 for the func-
tion f (η)=µ

η
z,V (NV ). As

D+
x f =D+

x µ
η
z,V (NV )=

{
0 if x ∈V,

µ
η∪x
z,V (NV )−µ

η
z,V (NV ) if x ∈�\V

and by Corollary 2.7 and V ∈Fl0 we have

|µη∪x
z,V (NV )−µ

η
z,V (NV )| � c z ld0

so that by Poincaré inequality, i.e., Theorem 4.1

µ
(
µz,V (NV ),µz,V (NV )

)
� c Eη

z,�(µz,V (NV ),µz,V (NV ))� c z |�\V | .

Finally, using also (4.16), we have

|t |
σ

µ(|µz,V (N̄V )|)� c

D1
|t |M−1/2

1 .
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We thus get∣∣∣µ(µz,V (ei t
σ

N̄V )
(
ei t

σ
{N̄�\V +µz,V (N̄V )}

)
−1
) ∣∣∣� c′ |t |M−1/2

1 e−c t2
, (3.17)

combining (3.15) and (3.17), we obtain∫ M1

−M1

µ(ei t
σ

N̄�) dt�c− c′M− 1
2

1

∫ M1

−M1

|t |e−ct2�c− c′M−1/2
1 �c

for M1 large enough.
Case 2: σ�Md+5

1 . Due to point 1 of Proposition 4.4 if |�|1/2 is large
compared to Md+5

1 this corresponds to extremely low particles density: by
(4.8), Md+5

1 �σ � D′
1

√
N , with D′

1 =D′
1(z0,R, δ). We have∫ πσ

−πσ

µ(ei t
σ

N̄�) dt =2πσµ(N� =N)� cµ(N� =N) .

Therefore, we have to estimate µ(N� =N). As N �M2d+10
1 /D′

1 we can find
subsets {Vi}Ni=1 of � such that d(Vi,Vj )>2R, i �=j , |Vi |�a |�|D′

1/M
2d+10
1 ,

0<a <1 a suitable numerical constant. Therefore

µ(N� =N) = 1

Z
η
z,�

zN

N !

∫
�N

e−βH
η
�(x) dx

� 1

Z
η
z,�

zN

N !

N∏
i=1

∫
Vi

dx

� 1

Z
η
z,�

zN |�|N
N !

(
a

D′
1

M2d+10
1

)N

�
(

a
D′

1

M2d+10
1

A−1
)N

NN

N !Zη
z,�

� c

where we used point 1 of Proposition 4.4.

4. TECHNICAL RESULTS

Through all the Section c will denote a positive constant which does
not depend on f,�,N and can change from line to line.
We first recall the Poincaré inequality proved in ref. 14 for a continuous
gas. Then, we give bounds on various kind of covariance for the finite vol-
ume grand canonical Gibbs measure when (CE) is assumed. Finally, we
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give a Gaussian upper bound on the characteristic function of the variable
N�.

4.1. The Poincaré Inequality

For a given function f on �, we let

D+
x f (ω) :=f (ω∪x)−f (ω), ω∈�, x ∈R

d .

We define

Eη
z,�(f ) := z

∫
�

dx µ
η
z,�(e−βD+

x H
η
�(x) |D+

x f |2)

and D(Eη
z,�) :={f : Eη

z,�(f )<∞}.
The following theorem is proven in ref. 14 (Theorem 2).

Theorem 4.1. Assume (CE). There exists a finite constant G =
G(R, z,β) such that for all η∈�, �⊂R

d the following inequality holds

µ
η
z,�(f, f )� GEη

z,�(f ) .

Remark 4.2. In fact, Eη
z,� is the Dirichlet form of a Glauber type

dynamics of a continuous gas (see ref. 14).

Remark 4.3. The Poincaré constant is such that G(R, z,β)� G

(R, z0, β), (see the proof of Theorem 2 in ref. 14, see also Corollary 5.1
in ref. 15).

4.2. Bounds on Covariance

The following proposition has been widely used in the proof of the
main result.

Proposition 4.4. Assume (CE). Fix δ > 0 and take � ∈ F2R+δ.
Then, for all η ∈ � and any function f ∈ L2(µ

η
z,�) with 2R + δ-support

� ⊂ �, there exists a positive constant A = A(R, z0, δ) such that the fol-
lowing statements hold

1. A−1z|�|�µ(N�)�Az|�|.
2. µ

η
z,�(N̄2

�)�Az|�|.
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3. µ
η
z,�(N̄4

�)�A max{z|�|, (z|�|)2}.
4. µ

η
z,�(N̄6

�)�A max{z|�|, (z|�|)3}.
5.

∣∣µη
z,�(f,N�)

∣∣�Aµ
η
z,�(f, f )1/2 √

z|�|.
6.

∣∣µη
z,�(f, N̄2

�)
∣∣�Aµ

η
z,�(f, f )1/2 max{z|�|,√z|�|}.

7.
∣∣µη

z,�(N�, N̄2
�)
∣∣�Az|�|.

where N̄�
.=N� −µ

η
z,�(N�).

To prove Proposition 4.4, we need the following key estimates:

Lemma 4.5. Fix δ >0. Let Q=Ql(x), x ∈R
d . Then, for all η∈�,

µ
η
z,Q(NQ) � ez|Q| z |Q| , (4.1)

µ
η
z,Q(N2

Q) � ez|Q| max{z|Q|, (z|Q|)2} , (4.2)

µ
η
z,Q(N4

Q) � ez|Q| max{z|Q|, (z|Q|)4} , (4.3)

µ
η
z,Q(N6

Q) � ez|Q| max{z|Q|, (z|Q|)3} . (4.4)

Furthermore if l �2R + δ, there exists a numerical positive constant c

such that

µ
η
z,Q(NQ)� c−1 e−z|Q| z |Q| . (4.5)

Proof of Lemma 4.5. By definition, we have

Z
η
z,Q =

+∞∑
k=0

zk

k!

∫
Qk

dx e
−βH

η
Q(x)

.

Since the pair potential φ�0, we easily deduce the following bound

1�Z
η
z,Q�ez|Q|. (4.6)

Furthermore,

µ
η
z,Q(NQ)=

+∞∑
k=1

kµ
η
z,Q(NQ =k)= 1

Z
η
z,Q

+∞∑
k=1

kzk

k!

∫
Qk

dx e
−βH

η
Q(x)

.
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Using that φ is positive and (4.6), we get

µ
η
z,Q(NQ)�z|Q|ez|Q|

Z
η
z,Q

�z|Q|ez|Q| .

Moreover,

µ
η
z,Q(NQ)�µ

η
z,Q(NQ =1)= 1

Z
η
z,Q

z

∫
Q

dx e
−βH

η
Q(x)

.

As l is strictly bigger than 2R, one can construct a cube Q̃ ⊂ Q such
that ∀x ∈ Q̃, H

η
Q(x)=0 (because there is only one particle in the cube Q).

Therefore, µ
η
z,Q(NQ)�z|Q̃|/Zη

z,Q. Thus

z |Q̃| e−z|Q| �µ
η
z,Q(NQ)� z |Q|ez|Q| . (4.7)

As there exists a numerical positive constant c such that |Q̃|�c−1|Q| the
bound (4.5) follows.
Inequality (4.1) can be obtained by

µ
η
z,Q(N2

Q)=
+∞∑
k=1

k2µ
η
z,Q(NQ =k) � 1

Z
η
z,Q

+∞∑
k=1

k2zk|Q|k
k!

= 1

Z
η
z,Q

z|Q|ez|Q|(1+ z|Q|)

� z|Q|ez|Q|(1+ z|Q|),

where we used again that φ is positive and (4.6).
The proofs of (4.3) and of (4.4) are analogous.

Proof of Proposition (4.4). To simplify the notations, we write µ
.=

µ
η
z,�, f̄

.= f − µ(f ) for any observable f , and l0 = 2R + δ. As � ∈ Fl0 let
{Qi}i∈I� be the partition of cubes of side l0 of �. We also use |Qi | .=|Q|=
ld0 ∀ i ∈ I� and define B =B(R, z0, δ)

.= ez0|Q|.

1. Using the partition of �, (4.1) and (4.5), the result follows.

2. Using the partition of � we can write

µ(N̄2
�)�

∑
i,j∈I�;i �=j

µ(NQi
,NQj

)+
∑
i∈I�

µ(N2
Qi

)
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and by (SMC), (4.1) and (4.1), we obtain that

µ(N̄2
�) � α

∑
i,j∈I�;i �=j

µ(NQi
)µ(NQj

)e−md(Qi,Qj ) +
∑
i∈I�

µ(N2
Qi

)

� αB2 z2|Q|2 |�|
|Q| +B

|�|
|Q| max(z|Q|, z2|Q|2) .

The result follows.

3. We can write

µ(N̄4
�)�

∑
i1,i2,i3,i4∈I�

∣∣µ(N̄Qi1
N̄Qi2

N̄Qi3
N̄Qi4

)
∣∣ . (4.8)

So, using Lemma 4.5 and the (SMC), we can bound∣∣µ(N̄Qi1
N̄Qi2

N̄Qi3
N̄Qi4

)
∣∣

by

(i) B max{z|Q|, (z|Q|)4} if i1 = i2 = i3 = i4;

(ii) B max{z|Q|, (z|Q|)2}2 if i1 = i2 �= i3 = i4;

(iii) B max{z|Q|, (z|Q|)2}
[
e−md(Qi1 ,Qi4 ∪Qi2 ) + e−md(Qi2 ,Qi4 )

]
if i1 = i2 =

i, i3 = j and i4 =k with i �= j , i �=k;

(iv) B max{z|Q|, (z|Q|)3}z|Q|e−md(Qi,Qj ) if i1 = i2 = i3 = i, i4 = j with
i �= j ;

(v) B max{(z|Q|)2, (z |Q|)4}e−md(i1,i2,i3,i4) if d(i1, i2, i3, i4)>8R and all
cubes are different, where d(i1, i2, i3, i4)=∑4

k=1 d(Qik ,∪j �=kQij );

and the result follows.

4. The Proof is the same as point 3.

5. For j = 1,2, . . . , let �j
.={Qi, i ∈ I� | j l0 �d(Qi,�)� (j + 1)l0}.

Call Nj
.=∑i∈I�j

NQi
. We write

∣∣µ(f,N�)
∣∣�2

∑
j�1

∣∣µ(f,Nj )
∣∣+ ∣∣µ(f,N�)

∣∣ . (4.9)

By (SMC), (4.1) and Schwarz inequality, we have∣∣µ(f,Nj )
∣∣� α µ(|f̄ |)µ(Nj ) e−mjl�α B µ(f,f )1/2 z |�j | e−mjl,
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and also

∣∣µ(f,Nj )
∣∣ = ∣∣µ(f̄ , N̄j )

∣∣�α µ(|f̄ |)(µ(Nj ,Nj ))
1/2e−mjl

� α
√

B µ(f,f )1/2√z|�j | e−mjl. (4.10)

Therefore, as there exists a numerical constant c such that |�j |�c (j +
1)d |�|, we have

∣∣µ(f,Nj )
∣∣� c′ µ(f,f )1/2 min{z|�|,

√
z|�|} e−mjl . (4.11)

with c′ =α min{B,
√

B}.
On other hand, by Schwarz inequality,

∣∣µ(f,N0)
∣∣�√

B µ(f,f )1/2
√

z|�| . (4.12)

Finally, by (4.9), (4.11) and (4.12), we get the result.

6. Let the �j be defined as in point 5. We write that

∣∣µ(f, N̄2
�)
∣∣= ∣∣µ(f̄ N̄2

�)
∣∣�2

∑
j�k

∣∣µ(f̄ N̄j N̄k)
∣∣ . (4.13)

Using (SMC), Schwarz inequality and 2 -, we find∣∣µ(f̄ N̄j N̄k)
∣∣�

cµ(f, f )
1
2


√

z|�j |min{z|�k|
√

z|�k|} e−m(k−j)l if j�1 and k�2j ,

z
√|�j |

√|�k| e−mlj if j�1 and k <2j ,√
z|�| min{z|�k|,

√
z|�k|}e−mkl if j =0 and k �1 ,

max{z|�|,√z|�|} if j =0 and k =0 .

Using again the bound |�k|�c (k +1)d |�|, the result comes from (4.13).

7. As above one has

∣∣µ(N�, N̄2
�)
∣∣�∑

i∈I�

∣∣µ(N̄Qi
N̄2

�)
∣∣ . (4.14)

Applying 6. to each term in the sum the result follows.
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4.3. Gaussian Upper Bound

Here, we prove a Gaussian upper bound for the characteristic func-
tion of the random variable N�.

Proposition 4.6. Let � ∈ F2R+δ, δ > 0. For any t ∈ [−π,π ], there
exists a positive numerical constant c such that∣∣ µ

η
z,�(e

it [N�−µ
η
z,�(N�)]

)
∣∣� exp{−c z e−z(2R+δ)d |�|t2} . (4.15)

Remark 4.7. Estimate (4.15) is called Gaussian upper bound. As in
the discrete case (see refs. 8 and 10), it is proven by assuming only finite
range and bounded interaction.

Remark 4.8. From inequality (4.15), it follows that

µ
η
z,�(N�,N�)� D1 z |�|, (4.16)

where D1 =2c e−z(2R+δ)d .

Proof. As �∈Fl0 , l0 =2R+δ, let {Qi}i∈I� be the collection of cubes
of the partition of �. To simplify, we write µ

.=µ
η
z,�, |Q| .=|Qi |, i ∈ I�.

Let �R
.={Qi i ∈ I� | d(Qi,Qj )>2R}. There exists a numerical posi-

tive constant c1 >1 such that |�R|�(1/c1)|�|.
We write∣∣ µ(eitN�)

∣∣ = ∣∣ µ(e
it
∑

j∈I�R
NQj eitN�\�R )

∣∣
= ∣∣ µ

(
�j∈I�R

µz,Qj
(e

itNQj )µ�\�R
(eitN�\�R )

) ∣∣
�
[

sup
j,ω

∣∣ µω
z,Qj

(e
itNQj )

∣∣]n

,

where we used DLR Eq. (2.1) and n=|I�R
|.

Set gj (t)=
∣∣∣µω

z,Qj
(e

i tNQj )

∣∣∣. Using that ∀ x�0, x�e(x2−1/2), we have

gj (t)� exp
[

1
2

(
g2

j (t)−1
)]

. (4.17)

By an explicit computation, we obtain

g2
j (t)−1=−

[
V arω

Qj
(cos(tNQj

))+V arω
Qj

(sin(tNQj
))
]
,
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where V arω
Qj

stands for the variance w.r.t. µω
z,Qj

.
But, as t ∈ [−π,π ],

V arω
Qj

(cos(tNQj
))+V arω

Qj
(sin(tNQj

))

= 1
2

∑
k,n

{
µω

z,Qj
(NQj

=k)µω
z,Qj

(NQj
=n)

×
[
(cos(tk)− cos(tn))2 + (sin(tk)− sin(tn))2

]}
� 1

2
µω

z,Qj
(NQj

=0)µω
z,Qj

(NQj
=1)

[
(cos t −1)2 + sin 2t

]
� 1

2
µω

z,Qj
(NQj

=0)µω
z,Qj

(NQj
=1) c t2 .

By (4.6), µω
z,Qj

(NQj
=0)=1/Zω

z,Qj
�e−z|Qj |.

On the other hand, proceeding as in the Proof of Lemma 4.5, we have

µω
z,Qj

(NQj
=1)�c z|Q|

ez|Q| .

Thus

g2
j (t)−1�− c

2
e−2z|Q| z|Q|t2

and then by (4.17),

gj (t)� exp{− c

4
e−2z|Q| z|Q|t2 }

so ∣∣µ(ei tN�)
∣∣� exp{−c2 c3

4
e−2z|Q| z|�R| t2 } .

The result follows using that |�R|�c−1
1 |�|.
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